M1. (a) conduction

1

(b) 35 000

1

(c) 500

their (b) = $2 \times c \times 35$ correctly calculated scores **2** marks allow **1** mark for correct substitution,

 $ie 35000 = 2 \times c \times 35$

or

their (b) = $2 \times c \times 35$

2

J / kg°C

1

(d) energy lost to surroundings

٥ı

energy needed to warm heater

accept there is no insulation (on the copper block) do **not** accept answers in terms of human error or poor results or defective equipment

[6]

1

M2. (a) (i) £150

gets 2

Else 1000 – (250 + 350 + 100 + 150) or 1000 – 850 gets 1

2

(ii) (Named) floor covering **OR** Insulation under floor for 1 mark

1

(b) (i) Draught proof doors or fibre glass in loft or in cavity For draught proofing

gains 1 mark

Very low cost/easy to install Repays for itself quickly/cost recuperated quickly Reasonable energy saving any 2 for 1 mark each

For loft insulation

Second lowest installation cost/easy to install Reasonable large energy savings for this cost Reasonable payback time gains 1 mark

For foam filled cavity

Biggest energy/cash saving Cost effective any 2 for 1 mark each

3

(ii) Double glazing

gains 1 mark

Costs most

Saves least energy Least cost effective any 2 for 1 mark each

3

[9]

М3.	(a)	loft insulation	L	
		energy saved in 10 years £600	l	
		net saving (600 – 110) £490	L	
		OR		
		hot water jacket	L	
		energy saved in 10 years £140	l	
		This is the highest percentage saving on cost	I	
	(b)	transferred to environment / surroundings		
	(6)	1	l	
		as heat / thermal energy		[5]

M4. (a) four calculations correctly shown

$$200 \times 10 - 1800 = £200$$

 $100 \times 10 - 2400 = -£1400$
 $50 \times 10 - 600 = -£100$
 $20 \times 10 - 75 = 125$

accept four final answers only **or** obvious rejection of solar water heater and underfloor heating, with other two calculations completed any 1 complete calculation correctly shown **or** showing each saving × 10 of all four calculations = 1 mark answers in terms of savings as a percentage of installation cost **may** score savings mark only

hot water boiler

correct answers only

(b) less electricity / energy to be generated / needed from power stations accept less demand

reduction in (fossil) fuels being burnt

accept correctly named fuel

accept answer in terms of:

fewer light bulbs required because they last longer (1 mark) less energy used / fuels burnt in production / transport etc. (1 mark)

ignore reference to CO₂ or global warming ignore reference to conservation of energy

[5]

2

1

1

M5.	(a)	CO	onduction	1
	(b)	(i)	there is a bigger temperature difference between the water and the surrounding air accept the water is hottest / hotter	1
			so the transfer of energy (from hot water) is faster accept heat for energy ignore temperature falls the fastest	1
		(ii)	120 allow 1 mark for converting kJ to J correctly, ie 4 032 000 or	
			correctly calculating temperature fall as 8°C	
			Or	
			allow 2 marks for correct substitution, ie 4 032 000 = $m \times 4200 \times 8$ answers of 0.12, 19.2 or 16.6 gain 2 marks	
			answers of 0.019 or 0.017 gain 1 mark	3
		(iii)	water stays hot for longer	1
			so heater is on for less time accept so less energy needed to heat water	1

so cost of the jacket is soon recovered from) lower energy costs / bills

[9]

1

M6. (a) (i) £190

nb mention idea of cost per J in £ will come to an approx figure full credit given allow 1 mark for showing that the energy loss through the roof is ¼ of the total energy loss ie 150 / 600

2

(ii) £142.50

allow ecf 50 % of their (a)(i) × 1.5 ie their (a)(i) × 0.75

1

(b) transferred to surroundings / atmosphere

or becomes spread out

[4]