M1. (a) conduction
(b) 35000
(c) 500
their (b) $=2 \times c \times 35$ correctly calculated scores 2 marks
allow 1 mark for correct substitution, ie $35000=2 \times c \times 35$
or their $(b)=2 \times c \times 35$
$\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$
(d) energy lost to surroundings
or
energy needed to warm heater
accept there is no insulation (on the copper block)
do not accept answers in terms of human error or poor results or defective equipment

M2. (a) (i) $£ 150$
gets 2
Else $1000-(250+350+100+150)$ or $1000-850$
gets 1
(ii) (Named) floor covering OR Insulation under floor for 1 mark
(b) (i) Draught proof doors or fibre glass in loft or in cavity For draught proofing
gains 1 mark
Very low cost/easy to install
Repays for itself quickly/cost recuperated quickly
Reasonable energy saving
any 2 for 1 mark each

For loft insulation
Second lowest installation cost/easy to install
Reasonable large energy savings for this cost
Reasonable payback time
gains 1 mark

For foam filled cavity

Biggest energy/cash saving
Cost effective
any 2 for 1 mark each
(ii) Double glazing
gains 1 mark
Costs most

Saves least energy Least cost effective
any 2 for 1 mark each
M3. (a) loft insulation1
energy saved in 10 years $£ 600$ 1
net saving (600-110) £490 1
OR
hot water jacket1
energy saved in 10 years $£ 140$ 1This is the highest percentage saving on cost1
(b) transferred to environment / surroundings1as heat / thermal energy1

M4. (a) four calculations correctly shown

$$
\begin{aligned}
& 200 \times 10-1800=£ 200 \\
& 100 \times 10-2400=-£ 1400 \\
& 50 \times 10-600=-£ 100 \\
& 20 \times 10-75=125 \\
& \text { accept four final answers only or obvious rejection of solar } \\
& \text { water heater and underfloor heating, with other two } \\
& \text { calculations completed any } 1 \text { complete calculation correctly } \\
& \text { shown or showing each saving } \times 10 \text { of all four calculations = } \\
& 1 \text { mark answers in terms of savings as a percentage of } \\
& \text { installation cost may score savings mark only }
\end{aligned}
$$

hot water boiler
correct answers only
(b) less electricity / energy to be generated / needed from power stations accept less demand
reduction in (fossil) fuels being burnt accept correctly named fuel accept answer in terms of: fewer light bulbs required because they last longer (1 mark) less energy used / fuels burnt in production / transport etc. (1 mark)
ignore reference to CO_{2} or global warming ignore reference to conservation of energy

M5. (a) conduction
(b) (i) there is a bigger temperature difference between the water and the accept the water is hottest / hotter

> so the transfer of energy (from hot water) is faster
> accept heat for energy ignore temperature falls the fastest
(ii) 120
allow 1 mark for converting kJ to J correctly, ie 4032000
or
correctly calculating temperature fall as $8^{\circ} \mathrm{C}$
or
allow 2 marks for correct substitution, ie $4032000=m \times 4200 \times 8$
answers of $0.12,19.2$ or 16.6 gain 2 marks
answers of 0.019 or 0.017 gain 1 mark
(iii) water stays hot for longer
so heater is on for less time
accept so less energy needed to heat water
so cost of the jacket is soon recovered from) lower energy costs / bills

M6. (a) (i) $£ 190$
nb mention idea of cost per J in $£$ will come to an approx figure full credit given
allow 1 mark for showing that the energy loss through the roof is $1 / 4$ of the total energy loss ie 150 / 600
(ii) £142.50
allow ecf 50% of their (a)(i) $\times 1.5$ ie their (a)(i) $\times 0.75$
(b) transferred to surroundings / atmosphere
or becomes spread out

